SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Titl	e:
Code No.:	FOR 109-4
Program:	FORESTRY TECHNICIAN
Semester:	TWO
Date:	MAY, 1986
Author:	J. G. WISKIN
	New: Revision: X
APPROVED:	Chairperson Date Date

CALENDAR DESCRIPTION

FOREST MENSURATION II

FOR 109-4

COURSE NAME

COURSE NUMBER

PHILOSOPHY/GOALS: To provide the student with a foundation in measurement principles and sampling techniques.

FOR 109 is a pre-requisite for FOR 203.

METHOD OF ASSESSMENT (GRADING METHOD): Student assessment is based on:

		Approximate weight
1.	Projects and assignments	35%
2.	Practical Tests	25%
	Theory Tests	40%
		100%

Tests and projects are assigned a numerical grade. Letter grades have the following numerical equivalent:

Projects, assignments and theory tes	Projects.	assignments	and	theory	test
--------------------------------------	-----------	-------------	-----	--------	------

Practical tests

A-	- =	90-100%	A =	=	90-100%
A	=	80-100%	В =	=	80-89%
В	=	70-79%	C =	=	70-79%
C	_	60-609			

Theory Tests

Test marks are cumulative. A student with an accumulated average o less than 60% in the tests may be required to write a $\frac{\text{final}}{\text{test}}$ test (rewrite) based on the entire semester.

Practical Tests

Students are required to attain competency standards in the use of the tree measuring instruments, consequently, a pass mark of 70% must be achieved on $\underline{\text{each}}$ test. One rewrite will be scheduled after each test.

FOR 109-4...3

Projects and Assignments

- Projects or assignments are to be handed in on or before an established "due date". Failure to do so will result in loss of marks up to a maximum of 10% per day.

TEXTBOOK(S):

- 1. Manual of Forest Measurements and Instruments
- 2. Manual of Lab and Field Assignments, Projects and Exercises
- 3. Reference textbooks in Library

COURSE OUTLINE AND OBJECTIVES

FOR 109-4

FOREST MENSURATION II

REF. NO.	TOPIC NO.	OBJECTIVES
2967.04	1	LOG IDENTIFICATION - identify commercial tree species in the log form
	2	 METRIC (SI) UNITS state the unit symbol for a given measurement use use the correct form for writing metric units and symbols state equivalent values between millimetres, centimetres, metres and kilometres and betwee square metres and hectares
2967.04	3	<pre>MEASUREMENT OF TREE DIAMETER - define and locate dbh - determine diameters for irregular trees - determine diameter class midpoints and class limits - define and derive tree basal area - use the dendrometers (parallel calipers, diameter tape, Biltmore stick and parabolic calipers) to measure tree diameter - use upper stem dendrometers to measure tree diameter - calculate the calibrations for the Biltmore stick - state four reasons why dbh is considered to be the primary tree measurement</pre>

2967.04 4 MEASUREMENT OF TREE HEIGHT

- define total and merchantable height
- describe the results of measuring a leaning tree
- name and describe hypsometers based on trigonometric principle (Abney, Haga, Suunto)
- use these hypsometers to determine total tree height
- from the degree scale, derive the percent and Haga scales
- name and describe hypsometers based on geometric principle (Staff, Merritt)
- describe how to use these hypsometers
- calculate the calibrations for the Merritt hypsometer

2967.01 5 FIELD NOTES

- name four important requirements of field notes
- list the type of information required in the design of tally sheets and map sheets
- use the dot-dash method for tallying tree diameters
- list the type of information to be included on site and stand description sheets
- write the common signs and symbols used for mapping forestry, land, water and cultural features
- list the abbreviations for commercial tree species (Ontario Ministry of Natural Resources)
- define the following land classifications, give examples and show the map symbol used: (a) non-productive forest land (b) non-forested land
- apply field mapping techniques to actual field conditions
- use acceptable drafting skills to prepare a forest stand map

2967.04 6 SAMPLING IN FORESTRY

- define the following terms:
 - (a) sample
 - (b) sample unit
 - (c) stand table
 - (d) stock table
- state two basic differences between fixed-are and variable-area sample units
- describe how stand variability affects plot size or strip width
- compare the advantages and disadvantages of strips vs. plots
- describe two types of errors that may occur in forest sampling
- calculate the radius of circular plots and th side and diagonal of square plots, given the area
- calculate the area of a forest property in hectares, given the dimensions in metres
- define and calculate: -
 - (a) sample area in hectares
 - (b) sample volume in m
 - (c) volume per hectare in m₃
 - (d) total stand volume in m3
 - (e) sample intensity
- locate plot and strip sample units in the field; tally trees on the sample units by species and diameter
- use a wedge prism at designated stations to determine basal area per hectare

2967.04 7 THE MEASUREMENT OF TREE GROWTH

- name and describe five ways of expressing tree growth
- name and describe three field methods for measuring past growth and predicting future growth
- define the following terms:
 - o Periodic Increment (P.I.)
 - o Periodic Annual Increment (P.A.I.)
 - o Current Annual Increment (C.A.I.)
 - o Mean Annual Increment (M.A.I.)
- calculate average P.A.I. from increment cores
- determine past growth from stem analysis
- describe the relationship between P.A.I. and M.A.I.

- describe three stages in the pattern of
- tree height growth
 determine a future stand table using the stand-table projection method for predicting future growth
- express rate of growth as a percentage value